Showing posts with label Kelas 12. Show all posts
Showing posts with label Kelas 12. Show all posts
Penyelesaian Integral Subtitusi Trigonometri

Penyelesaian Integral Subtitusi Trigonometri

Substitusi trigonometri dapat digunakan untuk menyelesaikan integral yang memuat bentuk akar
Bentuk Akar
Tujuan dari penggunaan substitusi trigonometri adalah untuk menghilangkan akar tersebut dalam integran. Kita dapat melakukan hal ini dengan menggunakan identitas Pythagoras
Identitas Pythagoras
Sebagai contoh, jika a > 0, misalkan u = a sin θ, dengan –π/2 < θ < π/2. Maka
Contoh
Perhatikan bahwa cos θ ≥ 0, karena –π/2 < θ < π/2.
Substitusi Trigonometri
  1. Untuk integral yang memuat √(a² – u²), misalkan u = a sin θ. Maka, didapatkan √(a² – u²) = a cos θ, di mana –π/2 < θ < π/2.
    Segitiga 1
  2. Untuk integral yang memuat √(a² + u²), misalkan u = a tan θ.
    Maka, √(a² + u²) = a sec θ, dengan –π/2 < θ < π/2.
    Segitiga 2
  3. Untuk integral yang memuat √(u² – a²), misalkan u = a sec θ. Maka,
    Substitusi Trigonometri 3
    Segitiga 3
Catatan Batasan dari θ memastikan bahwa fungsi pada substitusi tersebut merupakan fungsi satu-satu. Faktanya, batasan tersebut merupakan interval yang sama di mana arcsinus, arctangen, dan arcsecan didefinisikan.
Cara Menentukan Nilai Optimum Program Linear dengan Metode Garis Selidik

Cara Menentukan Nilai Optimum Program Linear dengan Metode Garis Selidik

Untuk menentukan nilai optimum fungsi objektif dengan menggunakan metode garis selidik, lakukanlah langkah-langkah berikut:
  1. Tentukan model pertidaksamaan dari informasi soal dan gambarkan daerah selesaian dari sistem pertidaksamaan tersebut pada bidang koordinat.
  2. Tentukan garis selidik ax + by = k apabila fungsi objektifnya f(xy) = ax + byab, dank bilangan real.
  3. Untuk menentukan nilai maksimum fungsi objektif maka carilah garis selidik dengan nilai k terbesar dan melalui titik (-titik) pada daerah selesaian. Sedangkan untuk menentukan nilai minimum fungsi objektif maka carilah garis selidik dengan nilai k terkecil dan melalui titik (-titik) pada daerah selesaian.
Untuk lebih memahami penerapan langkah-langkah tersebut, perhatikan contoh soal berikut.
Contoh Soal
Seorang peternak ayam petelur harus memberi makanan untuk tiap 50 ekor/hari paling sedikit 150 unit zat A dan 200 unit zat B. Zat-zat tersebut tidak dapat dibeli dalam bentuk murni, melainkan teerdapat dalam makanan ayam M1 dan M2. Tiap kg makanan ayam M1 mengandung 30 unit zat A dan 20 unit zat B, dan makanan M2 mengandung 20 unit zat A dan 40 unit zat B. Jika harga M1 adalah Rp 225/kg dan harga M2 adalah Rp 250/kg, dan tiap ekor membutuhkan 125 gr makanan/hari. Berapakah banyaknya makanan M1 dan M2 harus dibeli tiap hari untuk 1000 ekor ayam petelur, supaya harganya semurah-murahnya dan kebutuhan akan zat-zat itu dipenuhi?
Ayam
Pembahasan Contoh Soal
Langkah pertama: Ubah permasalahan di atas menjadi model matematika. Misalkan xdan y secara berturut adalah banyaknya makanan M1 dan M2 yang harus dibeli tiap hari untuk 1000 ekor ayam petelur. Karena tiap 50 ekor ayam dalam tiap harinya harus makan paling sedikit 150 unit zat A dan 200 unit zat B, tiap 1.000 ekor ayam dalam tiap harinya harus makan paling sedikit 3.000 unit zat A dan 4.000 unit zat B maka. Dan karena tiap ekor membutuhkan 125 gr makanan/hari, maka 1.000 ekor ayam membutuhkan 125.000 gr atau 125 kg makanan tiap harinya. Sehingga permasalahan di atas dapat dimodelkan sebagai berikut.
30x + 20y ≥ 3.000
20x + 40y ≥ 4.000
x + y ≥ 125
x ≥ 0
y≥ 0
x, y bilangan cacah
Fungsi objektif dari permasalahan di atas adalah f(xy) = 225x + 250y. Sebelum menggambar grafiknya, sebaiknya kita daftar titik-titik yang dilalui oleh garis-garis batas dari sistem pertidaksamaan di atas.
Tabel Titik-titik Koordinat
Apabila digambarkan, daerah selesaiannya seperti berikut.
Daerah Selesaian
Langkah kedua: Gambarkan garis selidik 225x + 250y = k.
Garis-garis Selidik
Setelah melihat gambar di atas, ternyata garis selidik yang melalui titik (50, 75) yang memiliki nilai k minimum (nilai k bisa dilihat pada sumbu y, semakin tinggi titik potong garis selidik terhadap sumbu y, maka semakin besar pula nilai k tersebut, dan sebaliknya). Untuk x = 50 dan y = 75, diperoleh nilai k-nya adalah 30.000.
Jadi, banyaknya makanan M1 dan M2 harus dibeli tiap hari untuk 1000 ekor ayam petelur supaya harganya semurah-murahnya dan kebutuhan akan zat-zat itu dipenuhi secara berturut-turut adalah 50 kg dan 75 kg.
Cara Menentukan Nilai Optimum Program Linear dengan Metode Titik Pojok

Cara Menentukan Nilai Optimum Program Linear dengan Metode Titik Pojok


x + y ≤ 600,
6.000x + 5.000y ≤ 600.000,
Untuk x, y anggota bilangan cacah, x ≥ 0, y ≥ 0
Dari sistem pertidaksamaan tersebut akan dicari nilai-nilai x dan y yang menyebabkan fungsi f(x,y) = 500x + 600y bernilai maksimum. Bentuk umum dari fungsi tersebut adalah f(xy) = ax + by. Fungsi yang akan dioptimumkan (maksimum atau minimum) ini kemudian disebut fungsi objektif. Untuk menentukan nilai optimum tersebut, dapat digunakan metode uji titik pojok.
Sebelum membahas metode uji titik pojok, sebaiknya kalian tahu mengenai nilai optimum. Nilai optimum dapat berupa nilai maksimum atau minimum, tergantung dari permintaan soal. Pada permasalahan ini yang diminta adalah nilai maksimum, sehingga kita akan mencari nilai-nilai x dan y yang menyebabkan fungsi objektif bernilai maksimum.
Metode Uji Titik Pojok
Untuk menentukan nilai optimum dengan menggunakan metode uji titik pojok, lakukan langkah-langkah berikut.
  1. Tentukan kendala-kendala dari permasalahan program linear yang dimaksud.
  2. Gambarlah daerah penyelesaian dari kendala-kendala dalam masalah program linear tersebut.
  3. Tentukan titik-titik pojok dari daerah penyelesaian itu.
  4. Substitusikan koordinat setiap titik pojok itu ke dalam fungsi objektif.
  5. Bandingkan nilai-nilai fungsi objektif tersebut. Nilai terbesar berarti menunjukkan nilai maksimum dari fungsi f(xy), sedangkan nilai terkecil berarti menunjukkan nilai minimum dari fungsi f(xy).
Untuk lebih memahami dalam menentukan nilai optimum suatu fungsi objektif dengan menggunakan metode uji pojok, perhatikan contoh soal berikut.
Contoh Soal
Ling ling membeli 240 ton beras untuk dijual lagi. Ia menyewa dua jenis truk untuk mengangkut beras tersebut. Truk jenis A memiliki kapasitas 6 ton dan truk jenis B memiliki kapasitas 4 ton. Sewa tiap truk jenis A adalah Rp 100.000,00 sekali jalan dan truk jenis B adalah Rp 50.000,00 sekali jalan. Maka Ling ling menyewa truk itu sekurang-kurangnya 48 buah. Berapa banyak jenis truk A dan B yang harus disewa agar biaya yang
dikeluarkan minimum?
Pembahasan Contoh Soal
Langkah pertama. Tentukan kendala-kendala dari permasalahan program linear yang dimaksud oleh soal. Untuk mengetahui kendala-kendalanya, sebaiknya kita ubah soal tersebut ke dalam tabel sebagai berikut.
Tabel Kendala
Sehingga, kendala-kendalanya dapat dituliskan sebagai berikut.
x + y ≥ 48,
6x + 4y ≥ 240,
x ≥ 0, y ≥ 0, x, y anggota bilangan cacah
Dengan fungsi objektifnya adalah f(xy) = 100.000x + 50.000y.
Langkah kedua. Gambarkan daerah penyelesaian dari kendala-kendala di atas. Gambar dari daerah penyelesaian sistem pertidaksamaan di atas adalah sebagai berikut (baca: “Program Linear: Menggambar Daerah Penyelesaian Sistem Pertidaksamaan Linear Dua Variabel”).
Daerah Penyelesaian
Langkah ketiga. Tentukan titik-titik pojok dari daerah penyelesaian itu. Titik pojok dari daerah penyelesaian di atas adalah titik potong garis 6x + 4y = 240 dengan sumbu-y, titik potong garis x + y = 48 dengan sumbu-x, dan titik potong garis-garis x + y = 48 dan 6x + 4y = 240.
Titik potong garis 6x + 4y = 240 dengan sumbu-y adalah titik (0, 60). Titik potong garis xy = 48 dengan sumbu-x adalah titik (48, 0). Sedangkan titik potong garis-garis x + y = 48 dan 6x + 4y = 240 dapat dicari dengan menggunakan cara eliminasi berikut ini.
Eliminasi
Diperoleh, titik potong garis-garis x + y = 48 dan 6x + 4y = 240 adalah pada titik (24, 24).
Langkah keempat. Substitusikan koordinat setiap titik pojok itu ke dalam fungsi objektif.
Rev Uji Titik Pojok
Langkah kelima. Bandingkan nilai-nilai fungsi objektif tersebut. Dari ketiga hasil tersebut, dapat diperoleh bahwa agar biaya yang dikeluarkan minimum, Ling ling harus menyewa 60 truk jenis B dan tidak menyewa truk jenis A.
Program Linear: Menggambar Daerah Penyelesaian Sistem Pertidaksamaan Linear Dua Variabel

Program Linear: Menggambar Daerah Penyelesaian Sistem Pertidaksamaan Linear Dua Variabel

Sistem pertidaksamaan linear dua variabel berupa beberapa pertidaksamaan linear yang terdiri dari 2 variabel, biasanya x atau y (walaupun jenis variabel lainnya tetap memungkinkan). Pertidaksamaan linear dua variabel memiliki bentuk umum seperti berikut:
ax + by < c, ax + by > c, ax + by ≤ c, atau ax + by ≥ c
Sebelum menggambar daerah penyelesaian sistem pertidaksamaan linear dua variabel, sebaiknya kita tahu terlebih dahulu mengenai himpunan penyelesaian. Himpunan penyelesaian merupakan himpunan pengganti nilai variabel sedemikian sehingga menyebabkan sistem pertidaksamaan menjadi pernyataan yang benar. Daerah penyelesaian yang akan kita gambar merupakan daerah dari himpunan penyelesaian tersebut. Daerah ini berisi himpunan pasangan berurutan (xy) yang menjadi anggota dari himpunan penyelesaian.
Untuk menggambar daerah penyelesaian sistem pertidaksamaan linear dua variabel, perhatikan contoh soal berikut.
Contoh Soal
Gambarlah daerah penyelesaian dari sistem pertidaksamaan linear berikut untuk xyanggota bilangan real.
–x + 8y ≤ 80
2x – 4y ≤ 5
2x + y ≥ 12
2x – y ≥ 4
x ≥ 0, y ≥ 0
Pembahasan Contoh Soal
Untuk menggambar daerah penyelesaian dari sitem pertidaksamaan yang dimaksud, lakukan langkah-langkah berikut:
Langkah pertama. Ubahlah pertidaksamaan-pertidaksamaan yang dimaksud menjadi persamaan linear, kemudian gambarkan persamaan linear tersebut pada bidang koordinat. Grafik dari persamaan linear berupa garis lurus. Untuk itu, cari dua titik yang dilewati oleh garis tersebut, kemudian hubungkan kedua titik tersebut menjadi suatu garis lurus. Dua titik ini biasanya dipilih titik pada sumbu-x dan sumbu-y, akan tetapi apabila kurang memungkinkan, pilihlah titik-titik lain.
Titik-titik Koordinat
Sehingga garis –x + 8y = 80 melalui titik-titik (0, 10) dan (16, 12). Dengan cara yang sama, dapat dicari 2 titik yang dilalui persamaan garis lainnya.
Tabel Titik-titik Koordinat
Sehingga, garis-garis dari –x + 4y = 80, 2x – 4y = 5, 2x + y = 12, dan 2x – y = 4 dapat digambarkan seperti berikut.
Grafik Persamaan Linear
Langkah kedua. Arsirlah daerah dari masing-masing pertidaksamaan. Untuk menentukan daerah pertidaksamaan, pilihlah salah satu titik yang terdapat di kanan atau di kiri, atas atau bawah dari garis. Apabila koordinat titik tersebut disubstitusikan ke dalam pertidaksamaan dan menghasilkan pernyataan yang benar, maka daerah titik tersebut merupakan daerah penyelesaian pertidaksamaan tersebut. Arsirlah daerah penyelesaian tersebut. Sebaliknya, apabila koordinat titik tersebut disubstitusikan ke dalam pertidaksamaan dan menghasilkan pernyataan yang salah, maka daerah titik tersebut bukan merupakan daerah penyelesaian pertidaksamaan tersebut. Arsirlah daerah yang berseberangan terhadap titik tersebut. Misalkan kita akan menemukan daerah penyelesaian dari pertidaksamaan –x + 8y ≤ 80. Misalkan kita pilih titik (0, 12) yang terletak di atas garis sebagai titik uji. Kita substitusikan ke dalam pertidaksamaan sebagai berikut.
Uji Titik
Dengan mensubstitusikan titik (0, 12) ke pertidaksamaan –x + 8y ≤ 80 menghasilkan pernyataan yang salah, sehingga daerah yang memuat titik (0, 12) bukan penyelesaian dari pertidaksamaan tersebut. Sehingga daerah yang berlawanan dengan daerah tersebut, yaitu daerah bawah, yang kita arsir.
Daerah Penyelesaian
Dengan cara yang sama, kita cari daerah penyelesaian dari pertidaksamaan-pertidaksamaan lainnya. Setelah itu kita gambarkan daerahnya seperti pada gambar berikut.
Daerah Penyelesaian 2
Langkah ketiga. Arsirlah daerah himpunan penyelesaian dari sistem pertidaksamaan yang dimaksud. Himpunan penyelesaian dari sistem pertidaksamaan merupakan irisan dari himpunan penyelesaian dari masing-masing pertidaksamaan. Atau secara visual, daerah penyelesaian dari sistem pertidaksamaan merupakan daerah yang terkena arsiran dari semua daerah penyelesaian. Sehingga himpunan penyelesaian dari pertidaksamaan –x + 8y ≤ 80, 2x – 4y ≤ 5, 2x + y ≥ 12, 2x – y ≥ 4, x ≥ 0, dan y ≥ 0 dapat digambarkan sebagai berikut.
Daerah Penyelesaian SPtLDV

Menyusun Model Matematika dalam Program Linear

Menyusun Model Matematika dalam Program Linear

Pertidaksamaan linear dapat digunakan untuk memecahkan masalah dalam kehidupan sehari-hari. Hal ini dapat dilakukan dengan memodelkan masalah tersebut ke dalammodel matematika. Sebagai contoh perhatikan permasalahan berikut ini.
Pak Budi adalah seorang pedagang roti. Beliau menjual roti menggunakan gerobak yang hanya dapat memuat 600 roti. Roti yang dijualnya adalah roti manis dan roti tawar dengan harga masing-masing adalah Rp 5.500,00 dan Rp 4.500,00 per bungkusnya. Dari penjualan roti ini, beliau memperoleh keuntungan Rp 500,00 dari sebungkus roti manis dan Rp 600,00 dari sebungkus roti tawar. Apabila modal yang dimiliki oleh Pak Budi adalah Rp 600.000, buatlah model matematika dengan tujuan untuk memperoleh keuntungan sebesar-besarnya!
Permasalah di atas dapat dimodelkan dalam bentuk matematika dengan menggunakan sistem pertidaksamaan linear dua variabel. Dengan memisalkan banyaknya roti manis dan roti tawar secara berturut-turut sebagai x dan y, maka diperoleh tabel sebagai berikut.
Tabel Model Matematika
Sehingga apabila dituliskan dalam bentuk sistem pertidaksamaan akan menjadi seperti berikut ini.
x + y ≤ 600,
5.500x + 4.500y ≤ 600.000,
Untuk x, y anggota bilangan cacah, x ≥ 0, y ≥ 0
Dua pertidaksamaan yang terakhir (baris ketiga) menunjukkan syarat dari nilai x dan y. Karena x dan y secara berturut-turut menyatakan banyaknya roti, maka tidak mungkin nilai x dan y bernilai negatif.
Perhatikan kolom keempat dari tabel di atas. Kolom keempat tersebut menyatakan fungsi yang akan ditentukan nilai maksimumnya (nilai optimum). Fungsi tersebut dapat dituliskan dalam persamaan matematika sebagai berikut.
f(x,y) = 500x + 600y
Tujuan dari permasalahan ini adalah mencari nilai x dan y yang menjadi anggota himpunan penyelesaian dari sistem pertidaksamaan, serta membut fungsi f(x,y) = 500x + 600y bernilai optimum (maksimum).
Ya, kita telah berhasil merumuskan masalah di atas ke dalam suatu model matematika. Dari ilustrasi di atas, dapatkah kalian menyimpulkan pengertian dari model matematika?
Model matematika adalah suatu cara sederhana untuk menerjemahkan suatu masalah ke dalam bahasa matematika dengan menggunakan persamaan, pertidaksamaan, atau fungsi.
Cara Menemukan Lintasan Terpendek

Cara Menemukan Lintasan Terpendek

Pada pembahasan ini kita akan menggunakan sifat pencerminan yang banyak diterapkan di dunia teknik dan sains. Sifat pencerminan yang akan kita gunakan mungkin bisa membantu kalian dalam bermain billiard. Sifat pencerminan tersebut dapat digunakan untuk menemukan lintasan terpendek yang dilalui suatu titik untuk menuju suatu garis kemudian dilanjutkan menuju titik lain di sisi yang sama.
Billiard
Investigasi: Menemukan Lintasan Terpendek
Untuk menemukan lintasan terpendek yang dilalui oleh titik untuk menuju ke garis, dan dilanjutkan ke titik dalam satu sisi terhadap garis tersebut, lakukan langkah-langkah berikut:
  1. Gambarlah ruas garis, yang dapat dianalogikan sebagai papan pantul meja billiard, di tengah-tengah kertas gambar. Gambar dua titik, A dan B, yang terletak pada satu sisi terhadap ruas garis.
  2. Bayangkan kalian akan mendorong bola di titik A sedemikian sehingga memantul melalui papan pantul kemudian mengenai bola lainnya di titik B. Gunakan busur derajat untuk menemukan titik C, titik di mana bola tersebut memantul pada papan pantul, secara coba-coba (trial and error).
  3. Gambarlah ruas garis AC dan BC yang merepresentasikan lintasan bola tersebut.
    Gambar Langkah 1, 2, dan 3
  4. Lipatlah kertas gambar sepanjang ruas garis untuk menggambar bayangan titik A. Berilah label titik bayangan A dengan A’.
  5. Kembalikan keadaan kertas seperti semula, kemudian gambarlah ruas garis yang menghubungkan titik B dengan A’. Apa yang dapat kalian peroleh? Apakah titik Cterletak pada ruas garis BA’? Coba bandingkan lintasan dari B ke A’ dengan lintasan dari A ke C kemudian ke B!
    Gambar langkah 4 dan 5
  6. Dapatkah kalian menemukan lintasan lain dari titik A ke ruas garis kemudian ke Byang panjangnya lebih pendek dari AC + BC? Mengapa atau mengapa tidak? Lintasan terpendek dari titik A ke ruas garis kemudian ke titik B disebut lintasan minimum (minimal path).
Kesimpulan tentang Lintasan Minimum
Dari beberapa langkah dalam investigasi menemukan lintasan minimum di atas dapat diperoleh kesimpulan sebagai berikut.
Jika titik-titik A dan B berada satu sisi terhadap ruas garis l, maka lintasan minimum dari titik A ke titik B dengan melewati ruas garis l dapat ditentukan dengan mencerminkan titik A terhadap ruas garis l dan menghasilkan bayangan A’. Apabila perpotongan ruas garis BA’ adalah C, maka lintasan minimumnya adalah ACB.
Untuk lebih memahami mengenai lintasan minimum, perhatikan contoh soal berikut ini.
Contoh Soal
Jalan tol baru telah dibangun di dekat Kota Baru dan Kota Lama. Dua kota tersebut berencana membangun jalan raya yang bertemu di jalan tol tersebut. Tentukan lokasi persimpangan jalan tol dan jalan raya yang akan dibangun agar jalan raya tersebut memiliki panjang yang minimum. Bagaimana kalian tahu kalau jalan raya yang kalian gambar merupakan lintasan minimum?
Ilustrasi Soal
Pembahasan Contoh Soal
Lintasan minimum yang menghubungkan Kota Baru, jalan tol, dan Kota Lama dapat ditunjukkan oleh gambar berikut.
Ilustrasi Pembahasan
Bagaimana kalian tahu kalau jalan raya yang kita gambar di atas merupakan lintasan minimum? Perhatikan gambar berikut!
Ilustrasi Pembahasan 2
Misalkan ADC adalah sembarang lintasan lain yang menghubungkan Kota Baru, jalan tol, dan Kota Lama. Karena DC = DC’, maka AD + DC = AD + DC’. Demikian juga, AB + BC =AB + BC’. Karena AB + BC’ < AD + DC’ maka AB + BC < AD + DC. Jadi, ABC merupakan lintasan minimum yang menghubungkan Kota Baru, jalan tol, dan Kota Lama.
Cara Menentukan Volume Benda Putar dengan Metode Cincin

Cara Menentukan Volume Benda Putar dengan Metode Cincin

metode cincin (washer method), yaitu suatu metode yang menggunakan integral dalam menentukan volume benda putar yang memiliki lubang. Cincin dalam metode ini dibentuk oleh hasil putaran persegi panjang terhadap sumbu putaran tertentu (sumbu putaran tidak berimpit dengan sisi persegi panjang), seperti terlihat pada gambar berikut.
Cincin dalam Metode Cincin
Jika r dan R secara berturut-turut merupakan jari-jari dalam dan luar dari cincin dan tmerupakan ketebalan cincin, maka volumenya dapat ditentukan sebagai berikut.
Volume Cincin
Untuk mengetahui bagaimana konsep ini dapat digunakan untuk menentukan volume benda putar, perhatikan daerah yang dibatasi oleh jari-jari luar R(x) dan jari-jari dalamr(x), seperti yang ditunjukkan gambar di bawah ini.
Benda Putar dengan Lubang
Jika daerah tersebut diputar menurut sumbu putar yang diberikan, volume benda putar yang dihasilkan adalah
Volume Benda Putar dengan Lubang
Perhatikan bahwa integral yang melibatkan jari-jari dalam merepresentasikan volume lubang yang dikurangkan dari integral yang melibatkan jari-jari luar. Untuk lebih memahami dalam menemukan volume benda putar dengan metode cincin, perhatikan contoh berikut.
Contoh: Penggunaan Metode Cincin
Tentukan volume benda putar yang dibentuk oleh putaran daerah yang dibatasi oleh grafik dari y = √x dan y = x2 terhadap sumbu-x, seperti yang ditunjukkan oleh gambar berikut.
Contoh Soal
Pembahasan Dari gambar di atas dapat ditentukan bahwa jari-jari luar dan dalamnya adalah sebagai berikut.
Jari-jari Luar dan Dalam
Dengan mengintegralkan dengan batas antara 0 dan 1, menghasilkan
Menghitung Volume dengan Metode Cincin
Cara Menentukan Volume Benda Putar dengan Metode Kulit Tabung

Cara Menentukan Volume Benda Putar dengan Metode Kulit Tabung

Metode ini disebut metode kulit tabung (shell method) karena metode ini menggunakan volume dari kulit tabung. Perhatikan persegi panjang di bawah ini dengan tadalah panjang dari persegi panjang, l adalah lebar persegi panjang, dan p adalah jarak antara sumbu putaran dengan pusat dari persegi panjang.
Selimut Tabung
Ketika persegi panjang tersebut diputar menurut sumbu putarannya maka akan dihasilkan kulit tabung dengan ketebalan l. Untuk menentukan volume kulit tabung tersebut, perhatikan dua tabung (tabung luar dan dalam) yang nampak pada gambar di atas. Jari-jari tabung yang lebih besar merupakan jari-jari luar dari kulit tabung, dan jari-jari dari tabung yang lebih kecil merupakan jari-jari dalam dari kulit tabung. Karena padalah rata-rata dari jari-jari kulit tabung, dan diketahui bahwa jari-jari luarnya p + l/2 dan jari-jari dalamnya p – l/2.
Jari-jari Luar dan Dalam
Maka, volume dari kulit tabung adalah
Volume Kulit Tabung
Rumus di atas dapat digunakan untuk menentukan volume dari benda putar. Anggap bidang datar pada gambar di bawah diputar menurut sumbu putarnya sehingga dihasilkan suatu benda putar.
Benda Putar
Apabila diperhatikan lebar dari persegi panjang tersebut adalah Δy, maka persegi panjang yang diputar terhadap garis yang sejajar dengan sumbu-x akan menghasilkan suatu kulit tabung yang volumenya
Volume Kulit Tabung II
Volume dari benda putar di atas dapat didekati dengan menggunakan volume n kulit tabung yang tebalnya Δy, tinggi t(yi) dan rata-rata jari-jarinya p(yi).
Pendekatan Volume Benda Putar
Pendekatan ini akan semakin baik dan semakin baik jika ||Δ|| → 0 atau n → ∞. Sehingga, volume benda putar tersebut adalah
Volume Benda Putar
Jadi, dari perhitungan di atas telah ditemukan rumus alternatif yang dapat digunakan untuk menentukan volume benda putar. Perhatikan kesimpulan berikut.
METODE KULIT TABUNGUntuk menentukan volume benda putar dengan metode kulit tabung, gunakan salah satu dari rumus berikut, seperti yang ditunjukkan oleh gambar di bawahnya.
Sumbu putarnya horizontal,
Sumbu Putar Horizontal
Sumbu putarnya vertikal,
Sumbu Putar Vertikal
Metode Kulit Tabung
Untuk lebih memahami dalam menentukan volume benda putar dengan menggunakan metode kulit tabung, perhatikan beberapa contoh berikut.
Contoh I: Penggunaan Metode Kulit Tabung untuk Menentukan Volume
Tentukan volume benda putar yang dibentuk oleh putaran daerah yang dibatasi oleh
Fungsi Contoh Soal I
dan sumbu-x (0 ≤ x ≤ 1) dengan sumbu putarannya adalah sumbu-y.
Pembahasan Karena sumbu putarannya vertikal, gunakan persegi panjang vertikal, seperti yang ditunjukkan oleh gambar di bawah.
Contoh Soal I
Ketebalan Δx mengindikasikan bahwa x merupakan variabel dalam proses integrasi yang akan dilakukan. Jarak antara pusat persegi panjang dengan sumbu putaran adalah p(x) =x, dan tingginya adalah
Tinggi Contoh Soal I
Karena rangenya antara 0 sampai 1, maka volume benda putar yang terbentuk dapat ditentukan sebagai berikut.
Pembahasan Contoh Soal I
Contoh II: Penggunaan Metode Kulit Tabung untuk Menentukan Volume
Tentukan volume benda putar yang dibentuk oleh putaran daerah yang dibatasi oleh
Fungsi Contoh Soal II
dan sumbu-y (0 ≤ y ≤ 1) dengan sumbu-x sebagai sumbu putarnya.
Pembahasan Karena sumbu putarannya horizontal, gunakanlah persegi panjang horizontal, seperti yang ditunjukkan gambar di bawah ini.
Contoh Soal II
Jarak antara pusat persegi panjang dan sumbu putarannya adalah p(y) = y, dan panjang dari persegi panjangnya adalah
Tinggi Contoh Soal II
Karena range dari y dari 0 sampai 1, maka volume benda putarnya dapat ditentukan sebagai berikut.
Pembahasan Contoh Soal II

Copyright © PM. Template by: Petunjuk Onlene